STEREOSPECIFIC POLYMERIZATIONS OF CYCLOALKENES INDUCED BY A METAL-CARBENE

Thomas J. Katz, Steven J. Lee, and Nancy Acton Department of Chemistry, Columbia University New York, New York 10027, USA **(Received in UsA 3 September** 1976; **received** in UK for pblicatioa 4 October 1976)

Since olefin metatheses are thought to be brought about by **chain reactions propagated 1** metal-carbenes, it seemed worthwhile to see whether metal-carbenes inemselves initiate polymerizations of cycloalkenes.³ Kroll and Doyle had found mixtures of some metal-carbenes methylaluminum dichloride, and tetrabutylammonium salts effective, 4 and such combinations convert cyclooctene to a polyoctenamer that is largely trans and cyclopentene to a polypentenamer that is 90% trans. I We have found that (diphenylcarbene)pentacarbonyltung alone, without added cocatalysts, is an effective initiator of metatheses of **numerous** cis-cycloalkenes, converting them into polyalkenamers 90% or more of whose double bonds are <u>cis</u> (equation 1). Cyclobutene, cyclopentene, cycloheptene, cyclooctene, and norbornene a

$$
\begin{array}{ccc}\n\circ & (C_6H_5)_2C=W(CO)_5 \\
\hline\n\end{array} \qquad \qquad \text{etc.} \qquad \qquad \bullet \text{tc.} \qquad \qquad \bullet \text{tc.} \qquad \qquad \bullet \text{tc.}
$$

all transformed in this way. The resulting polymers are all soluble in toluene or benzene a their molecular weights are high.

g
Previously the only cis polyalkenamers to have been described were cis-polypentenamer, rieviously the only $\frac{119}{10}$ polyarkehamers to have been described were $\frac{10}{240}$ polypentehames octenamer. 11 Polybutenamer has not previously been obtained with more than 60% of its double bonds cis,¹² and polyheptenamer, largely trans and of low molecular weight, has been obtained in only scanty yield. 13,14

In a typical experiment, a solution of cycloheptene (2.88 g, 30 mmol) in toluene (8.3 g. was passed through a column of basic alumina, degassed, and distilled from calcium hydride onto a potassium mirror and then onto (diphenyLcarbene)pentacarbonyltungsten (59 mg, 0.12 mmol). The reaction mixture, sealed in a vacuum, was stored at 38' for 36 hr. dissolved in 100 ml toluene, and the product precipitated with methanol yielding 1.9 g (66%) of polyheptenamer. Analyses and results of similar experiments are in table 1.

The polymerization of norbornene was effected in a bottle using 65 g (0.69 mole) and 40 g benzene. The reactants were poured in, purged with argon, the tungsten compound

4247

monomer $(solvent)^{\pm}$	moles olefin/ tungsten $(°C)$	temper- ature	time $\{hr\}$	yield	[n]≞ $\frac{d1}{g}$	ᅹ	$\overline{M}^b_{\overline{n}}$	% cis	
								Infra- $red-$	13. c -nmr d
cyclobutene(t)	192	rt^e	15	58	6.54	4.4×10^5 1.7 $\times 10^5$		93	
cyclopentene (n)	250	40	5.5		4.7			96	95
ditto (n)	500	37	14	40	3.3		3.5×10^5 1.2 $\times 10^5$	91	80
cycloheptene(t)	250	38	36	66	10.5	1.4×10^6 2.1×10^5		98	>98
cyclooctene (n)	200	40	15	50	10.0			97	
ditto (t)	60	41	14.5	44	3,75	3.7×10^5	2.0×10^5	97	>98
norbornene (b)	168	rt	18	91	7.18	8.5×10^5 3.3 $\times 10^5$		94	90
ditto (t)	530	rt	72	100	5.90	4.3 $\times 10^5$	1.0×10^{5}	95	95

Table 1. Preparation and Properties of Polyalkenamers

 4 All viscosities were measured at 30^o except that of the polyoctenamer prepared in toluene, which was measured at 25° for comparison with the $[n]$ - M relationship of a polyocttenamer containing both cis and trans double bonds (reference 15). The solvent was toluene for polypent-, hept-, and octenamers and benzene for polybut- and norbornenamers. EMolecular weights were measured by gel permeation chromatography and analyzed by the procedure outlined in footnote 22 of reference 8c. $[\langle L_{\alpha}^2 \rangle /M]^{1/2}$ for cis-polybutadiene was taken as 0.92 Å. However for polynorbornenamer the molecular weightsare estimated **as one** half those according to polystyrene calibrations, The solvents were THF at ambient temperature for olypent-, hept-, and octenamers, o-dichlorobenzene at 140° for the rest. Since note 16. $\frac{3}{2}$ Measured by the ratios of the intensities of the trans and cis C-2 resonances, except for polynorbornenenamer, where the ratio used was that of the resonance at 38.7 to the sum of all resonances from 32 to 44 ppm. ERoom temperature. $It =$ toluene, $n =$ none, $b =$ benzene.

(201 mg, 0.41 mmol) added, and the bottle capped. After standing overnight the product was dissolved in benzene and precipitated with methanol (see table 1).

The olefinltungsten ratio **was** raised as high as 4000 in one experiment with 150 g norbornene and 50 g pentane. The yield was 67% , $\lceil n \rceil = 2.56$ dl/g, $\%$ cis = 95. The 13 C-nmr spectra of the polymers are summarized in table 2. The essential point is that trans olefins are characterized by allylic carbon resonances at ca. 5.0 ppm higher frequency than $\rm{cis.}^{18}$ and such resonances are weak or unobserved. The infrared spectra also confirm the stereochemical assignments. 16

The propensity for forming the cis olefins is we suppose *a* consequence of conformational factors. la,19

Besides inducing high <u>cis</u>-stereospecificity, the metal-carbene has two other advantages over conventional initiators of olefin metathesis. Since no metalalkyl is present, no acyclic olefins form to decrease molecular weights by chain transfer. 20 And no metal halide is present to induce side reactions of olefins^{8b} or to corrode equipment.

That (diphenylcarbene)pentacarbonlytungsten is not the only stable metal-carbene to initiate metatheses is demonstrated by the work in the accompanying paper. 21

	c_{1}	c_{2}	c_3	\mathbf{c}_4	
polybutenamer	129.66	27.52			
polypentenamer	129.91	27.01	29.96		3
polyheptenamer	129.88	27.25	29.72	29.02	
polyoctenamer	129.88	27.33	29.85	29.29	
polynorbornenamer	133.95	38.70	33.32	42.77	4

<u>Table 2</u>. ""C-nmr Chemical Shifts of <u>cis</u>-Polyalkenamers in CDC1₃ at 60" in ppm Relative to Tetramethylsilane

Acknowledgements. We are grateful to Iwao Miura for determining nmr spectra and to David Treatman for determining viscosities.

References and Notes

- (1) (a) T. J. Katz and J. McGinnis, J. Am. Chem. Soc., 97, 1592 (1975); (b) T. J. Katz and R. Rothchild, ibid., 98 , $251\overline{9}$ (1976); (c) C. P. Casey and T. J. Burkhardt, ibid., 96 , 7808 (1974); (d) D. J. Cardin, M. J. Doyle, and M. F. Lappert, J. Chem. sot., Chem. Commun., *927* (1972); (e) R. I-l. Grubbs, D. D. Carr, C. Hoppin and P. L. Burk, J. Am. Chem. Sot., 98, 3478 (1976) (f) B. A. Dolgoplosk et al., Eur. Polym. J., 10, 901 (1974), Dokl. Chem., 216 380 (1974); (g) J. L. Herisson and Y. Chauvin, Makromol. Chem., <u>141</u>, 161 (1970); (h) J.-P. Soufflet, D. Commereuc, and Y. Chauvin, C. R. Acad. Sci. Ser. C, <u>276</u>, 169 (1973).
- (2) D. J. Cardin, B. Cetinkaya, and M. F. Lappert, Chem. Rev., 72, 545 (1972).
- (3) Reviews: (a) G. Dall'Asta, Rubber Chem. Techn., 47, 511 (1974); (b) N. Calderon, J. Macromol. Sci. Rev. Macromol. Chem., <u>C7</u>, 105 (1972); (c) R. Streck, Chem. Ztg., <u>99,</u> 397 (1975).
- (4) W. R. Kroll and G. Doyle, J. Chem. Sot., Chem. Commun., 839 (1971).
- (5) J.-P. Arlie, Y. Chauvin, D. Commereuc, and J.-P. Soufflet, Makromol. Chem., <u>175</u> 861 (1974).
- (6) C. P. Casey and T. J. Burkhardt, J. Am. Chem. Sot. 95, 5833 (1973).
- (7) It has previously been used to induce metatheses of olefins that do not metathesize in conventional procedures, but no example is published of the metathesis of common 1,2-disubstituted olefins.
- (8) (a) J. McGinnis, T. J. Katz, and S. Hurwitz, J. Am. Chem. Soc., 98, 605 (1976); (b) T. J. Katz, J. McGinnis, and C. Altus, ibid., $98, 606$ (1976); (c) S. J. Lee, J. McGinnis, and T. J. Katz, <u>J. Am. Chem. Soc., in press</u> (1976).
- (9) (a) G. Natta, G. Dall'Asta, and G. Mazzanti, Angew. Chem. Int. Ed. Engl., 3, 723 (1964); (b) See reference 5, p. 521 ff; (c) P . Günther et al., Angew. Makromol. Chem., 14, 87 (1970) = $16/17$, 27 (1971). (d) G. Dall'Asta and G. Motroni, Angew. Makromol. Chem., <u>175</u>, 2605 (1974). $16/17$, 51 (1971), (e) G. Pampus and G. Lehnert, Makromol. Chem.,
- (10) G. Sartori, F. Ciampelli, and N. Cameli, Chim. Ind. (Milan), 45, 1478 (1963).
- (11) (a) M. Zimmermann, G. Lehnert, D. Maertens, and G. Pampus, Ger. Offen., 2,334,604 [Chem. Abstr., 2, 11869e (1975)1; (b) G, Dall'Asta and R. Manetti, Ital. Pat. $932,461$, referred to in reference 3a, p. 551.
- (12) (a) G. Natta, G. Dall'Asta, G. Mazzanti, and G. Motroni, Makromol. Chem., 69, 163 (1963); (b) G. *Natta, G.* Dall'Asta, *and* L. Porri, Makromol. Chem., 8l, 253 (1965); (c) G. Dall'Asta, G. Mazzanti, G. Natta, and L. Porri, Makromol. Chem., 56, 224 (1962); (d) G. Dall'Asta, J. Polym. Sci. Part A-1, 6 , 2397 (1968).
- (13) (a) G. Natta, G. Dall'Asta, I. W. Bassi, and G. Carella, Makromol. Chem., <u>91</u>, 87 (1966); (b) L. Porri, P. Diversi, A. Lucherini, and R. Rossi, ibid (1975); (c) Brit. Pat, 1,062,367 (1967), ibid., <u>176</u>, 3121
- (14) F. R. Marshall and B. G. Ridgewell, <u>Eur. Polym. J</u>., <u>5</u>, 29 (1969) claimed to have made a polyheptenamer in 100% yield but no details were given.
- (15) W. Glenz, W. Holtsup, F. W. Kupper, and H. H, Meyer, Angew, Makromol. Chem., 37, 97 (1974).
- (16) The <u>cis/trans</u> ratio was measured, except <u>i</u>n one case, by the ratio of the intensities of the Infrared peaks at ca. 1400 and 960 cm [W. A. Golub, J. Polyp, *Sci.,* Polym. Lett. **Ed., l2, 295 (1974)]. The** extinction coefficients, except that of cis-polyheptenamer which was found here to be $9.0 + 0.5$ l/mol cm, were those of C. Tosi, F. Ciampelli, and G. Dall'Asta, <u>J. Polym. Sci. Part A-2, 11</u>, 529 (1973). For polynorbornenamers, by comparing C-nmr and ir spectra we found that the % trans was measured as 27.7(D_{Q65}/D₁₆₄₅) - 8.8. The procedure is that of reference 17 and the relationship similar to that discovered there.
- (17) T. Tsujino, T. Saegusa, S. Kobayashi, and J. Furukawa, Kogyo Kagaku Zasshi, 67, 1961 (1964); see also T. Oshika and H. Tabuchi, Bull. Chem. Sot, Jap., 4l, 211 (1968).
- (18) (a) M. W. Duch and D. M. Grant, <u>Macromolecules, 3</u>, 165 (1970); (b) V. D. Mochel, <u>J</u>. Polym. Sci. Part A-1, 9 1009 (1972); (c) J. Furukawa, E. Kobayashi, T. Kawagoe, N. Katsuki, and M. Imanari, <u>J. Polym, Sci. Part B, 11</u> al., Makromol. Chem., <u>170</u>, 257 (1973); Ed., $\frac{12}{15}$, 85 (1974); (f) G. Gatti and A. Carbonaro, Makromol. Chem., $\frac{175}{125}$, 1627 (1974). H.) $\underline{11}$, 239 (1973); (d) K.-F. Elgert et Chen, J. Polym. Sci., Polym. Letc
- (19) Possibly conformer V in reference 1 is favored because the axial substituent is juxtaposed against the metal rather than a carbon, and carbon-tungsten bonds are long (<u>ca</u>. 2.39 A, c<u>t</u>. M. R. Churchill in "Perspectives in Structural Chemistry," volume III, J. D. Dunitz and J. A. Ibers, editors, John Wiley and Sons, New York, 1970, p. 91 ff.)
- (20) See reference 3a, p. 541.
- (21) T. J. Katz and N. Acton, accompanying paper.